Desenvolvimento de marcadores estádios-específicos para efeitos morfogenéticos in vitro por genes candidatos in silico em espécies frutíferas do cerrado

Autores

DOI:

https://doi.org/10.47822/bn.v12i1.502

Palavras-chave:

Somatic embryogenesis-related kinase, Babyboom, Photosystem II protein D1

Resumo

Objetivo: analisar os candidatos in silico aos genes de interesse SERK, BBM e psbA e sua possível ocorrência em espécies do cerrado. Materiais e Métodos: foram testados três diferentes genes como forma de expansão dos estudos e para que fosse possível enquadrar qual gene continha mais sequências relacionadas às frutíferas do cerrado. Resultados: as sequências de interesse das frutíferas do cerrado encontradas e analisadas foram: Barbatimão (Stryphnodendron Mart.), Buriti (Mauritia flexuosa L.f.), Cagaita (Eugenia dysenterica [Mart.] DC.), Cajuzinho (Brysonima intermedia A. Juss.), Guaçatonga (Casearia syestris Sw.), Jenipapo (Genipa americana L.), Joá-bravo (Solanum viarum Dunal), Pau-terra (Qualea grandiflora Mart.), Pequi (Caryocar brasiliense Cambess.), todas identificadas com seus respectivos descritores botânicos. Conclusão: tal análise possibilitou a discussão e enfoque desta pesquisa subsidiando o desenvolvimento futuro de marcadores fisiológicos, histo-anatômicos e moleculares estádios-específicos, como estratégia para o estudo dos processos da embriogênese zigótica e somática, assim como organogênicos para espécies agronômicas e nativas.

Referências

Pfeilsticker, TR, Buzatti, RSO, Muniz, AC, Bueno, ML, Lemos-Filho, JP, Lovato, MB. Genetic and functional leaf trait diversity throughout the distribution of two Cerrado tree species: Testing the centre-periphery hypothesis. J Biogeogr. 2021;48:2258-74. Available from: https://doi.org/10.1111/jbi.14148

Ratter, JA, Bridgewater, S, Ribeiro, JF. Analysis of the floristic composition of the Brazilian cerrado vegetation iii: comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany. 2003;60:57-109. Available from: https://doi.org/10.1017/S0960428603000064

Klink, CA, Machado, RB. A conservação do Cerrado brasileiro. Megadiversidade. 2005;1:1-9. Available from: https://www.researchgate.net/publication/228342037_A_conservacao_do_Cerrado_brasileiro

Zimbres B, Rodríguez-Veiga P, Shimbo JZ, Bispo PC, Balzter H, Bustamente M, et al. Mapping the stock and spatial distribution of aboveground woody biomass in the native vegetation of the Brazilian Cerrado biome. Forest Ecology and Management. 2021;499:1-15. Available from: https://doi.org/10.1016/j.foreco.2021.119615

Ballesteros-Mejia, L, Lima, JS, Collevatti, RG. Spatially-explicit analyses reveal the distribution of genetic diversity and plant conservation status in Cerrado biome. Biodiversity and Conservation 2018;29(5):1537-54. Available from: https://doi.org/10.1007/s10531-018-1588-9

Karim, R, Tan, YS, Singh, P, Khalid, N, Harikrishna, JA. Expression and DNA methylation of SERK, BBM, LEC2 and WUS genes in in vitro cultures of Boesenbergia rotunda (L.) Mansf. Physiology and Molecular Biology of Plants. 2018;24(5):741-51. Available from: https://doi.org/10.1007/s12298-018-0566-8

Diniz-Filho JAF, Barbosa ACOF, Chaves LJ, Souza KS, Dobrovolski R, Rattis L, et al. Overcoming the worst of both worlds: integrating climate change and habitat loss into spatial conservation planning of genetic diversity in the Brazilian Cerrado. Biodiversity and Conservation. 2018;29(5):1555-70. Available from: https://doi.org/10.1007/s10531-018-1667-y

Koehler AD, Irsigler AST, Carneiro VTC, Cabral GB, Rodrigues JCM, Gomes ACMM, et al. SERK genes identification and expression analysis during somatic embryogenesis and sporogenesis of sexual and apomictic Brachiaria brizantha (Syn. Urochloa brizantha). Planta. 2020;252(3):1-15. Available from: https://doi.org/10.1007/s00425-020-03443-w

Toonen MAJ, Schmidt EDL, Kammen AV, Vries SC. Promotive and inhibitory effects of diverse arabinogalactan proteins on Daucus carota L. somatic embryogenesis. Planta. 1997;203:188-95. Available from: https://doi.org/10.1007/s004250050181

Brandt, B, Hothorn, M. SERK co-receptor kinases. Current Biology. 2016;26(6):225-6. Available from: https://doi.org/10.1016/j.cub.2015.12.014

Jha P, Kumar V. BABY BOOM (BBM): a candidate transcription factor gene in plant biotechnology. Biotechnol Lett. 2018;40(11-12):1467-75. Available from: https://doi.org/10.1007/s10529-018-2613-5

Yang HF, Kou YP, Gao B, Soliman TMA, Xu KD, Ma N, et al. Identification and functional analysis of BABY BOOM genes from Rosa canina. Biol Plant. 2014;58:427–35. Available from: https://doi.org/10.1007/s10535-014-0420-y

Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell. 2002 aug;14(8):1737-49. Available from: https://doi.org/10.1105/tpc.001941

Ranade SS, Egertsdotter U. In silico characterization of putative gene homologues involved in somatic embryogenesis suggests that some conifer species may lack LEC2, one of the key regulators of initiation of the process. BMC Genomics. 2021;22:392. Available from: https://doi.org/10.1186/s12864-021-07718-8

Metz J, Nixon P, Diner B. Nucleotide sequence of the psbA3 gene from the cyanobacterium Synechocystis PCC 6803. Nucleic Acids Res. 1990;18(22):6715. Available from: https://doi.org/10.1093/nar/18.22.6715

Stecher G, Tamura K, Kumar S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Molecular Biology and Evolution 2020;37(4):1237-9. Available from: https://doi.org/10.1093/molbev/msz312

Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021;38(7):3022-7. Available from: https://doi.org/10.1093/molbev/msab120

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731-9. Available from: https://doi.org/10.1093/molbev/msr121

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673-80. Available from: https://doi.org/10.1093/nar/22.22.4673

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-25. Available from: https://doi.org/10.1093/oxfordjournals.molbev.a040454

Sitnikova T, Rzhetsky A, Nei M. Interior-branch and bootstrap tests of phylogenetic trees. Mol Biol Evol. 1995;12(2):319-33. Available from: https://doi.org/10.1093/oxfordjournals.molbev.a040205

Felsenstein J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution. 1985;39(4):783-91. Available from: https://doi.org/10.2307/2408678 .

Nei M, Kumar S. Molecular Evolution and Phylogenetics. 2000. Oxford University Press, New York.

Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36.

Ma J, He Y, Wu C, Liu H, Hu Z, Sun G. Cloning and Molecular Characterization of a SERK Gene Transcriptionally Induced During Somatic Embryogenesis in Ananas comosus cv. Shenwan. Plant Mol Biol Rep. 2012;30:195-203. Available from: https://doi.org/10.1007/s11105-011-0330-5

Lacerda GA. Obtenção e caracterização de calos e plântulas a partir de embriões zigóticos imaturos de Coffea arabica L. e análise in silico do gene SERK. Orientador: Luciano Vilela Paiva. 2008. 150 p. Tese (Doutor em Fisiologia Vegetal) - Programa de Pós-Graduação em Agronomia da Universidade Federal de Lavras, Lavras, 2008. Available from: http://www.sbicafe.ufv.br/bitstream/handle/123456789/6643/Tese_Guilherme%20Araujo%20Lacerda.pdf?sequence=1&isAllowed=y

Ahmadi B, Masoomi-Aladizgeh F, Shariatpanahi ME, Azadi P, Keshavarz-Alizadeh M. Molecular characterization and expression analysis of SERK1 and SERK2 in Brassica napus L.: implication for microspore embryogenesis and plant regeneration. Plant Cell Rep. 2016;35(1):185-93. Available from: https://doi.org/10.1007/s00299-015-1878-6

Santos MO, Aragão FJ. Role of SERK genes in plant environmental response. Plant Signal Behav. 2009;4(12):1111-3. Available from: https://doi.org/10.4161/psb.4.12.9900

Lewis MW, Leslie ME, Fulcher EH, Darnielle L, Healy PN, Youn JY, et al. The SERK1 receptor-like kinase regulates organ separation in Arabidopsis flowers. Plant J. 20101;62(5):817-28. Available from: https://doi.org/10.1111/j.1365-313X.2010.04194.x

Hu H, Xiong L, Yang Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta. 2005;222(1):107-17. Available from: https://doi.org/10.1007/s00425-005-1534-4

Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries S. The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 Control Male Sporogenesis. The Plant Cell. 2005;17(12):3337-49. Available from: https://doi.org/10.1105/tpc.105.036814

Mulo P, Sakurai I, Aro EM. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. Biochim Biophys Acta. 2012;1817(1):247-57. Available from: https://doi.org/10.1016/j.bbabio.2011.04.011

Rögner M, Nixon PJ, Diner BA. Purification and characterization of photosystem I and photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium Synechocystis PCC 6803. Journal of Biological Chemistry. 1990;265(11):6189-96. Available from: https://doi.org/10.1016/S0021-9258(19)39309-3

Downloads

Publicado

2023-04-11

Como Citar

Santos, L. C. D., Rodrigues, V. S., Pimenta, M. A. S., Arrudas, S. R., & Lacerda, G. A. . (2023). Desenvolvimento de marcadores estádios-específicos para efeitos morfogenéticos in vitro por genes candidatos in silico em espécies frutíferas do cerrado. Bionorte, 12(1), 333–345. https://doi.org/10.47822/bn.v12i1.502

Edição

Seção

Artigo original